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Memory retrieval 



Memory retrieval – with cues 



Memory retrieval – without cues 



Free recall VS Recognition 

Free recall 

Recognition 

Fig: Standing (1973), Q J Exp Psy. Free Recall: Binet & Henri (1894), Murdock (1960) J Exp Psy 







Retrieval from long-term memory – power law 
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Research Questions 

• What prevents information stored in long-
term memory to be efficiently retrieved? 

• Is there a parsimonious explanation for the 
power-law scaling of recall capacity? 



 Neural network models of long-term memory 

(Hopfield, 1982) 
 

 Memories are represented as attractors (stable states) of network dynamics.  

 Attractor = internal representation (memory) of a stimulus  

 Each attractor: a subset of neurons that has elevated persistent activity.  

 Synaptic changes => Changes in attractor landscape =  changes in memory  

 Convergence to an attractor = recall of item from memory 

 

 



Hopfield model with sparse random coding 
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Hopfield model with sparse random coding:  
Storage capacity  
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N: number of neurons in the network 
f:   average fraction of neurons in the network encoding a memory 



Mathematical model 

Similarities (intersections) 
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Mathematical model 

Similarities (intersections) 
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One parameter (f) 



Associative retrieval: graph representation 
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Romani et al 2013 



Retrieval capacity: analytical solution 
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Retrieval capacity: analytical solution 
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Retrieval capacity: analytical solution 
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Паста+шоколадка 
 
 



1. Random asymmetric matrix of similarities:  
exact solution of the model 
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1. Random asymmetric matrix of similarities:  
exact solution of the model 
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Power law scaling 
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Normalized probability distribution 
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Bennet Murdock 
(Toronto) 

 



Retrieval capacity: longer lists 

Courtesy of B. Murdock 



Retrieval capacity: longer lists  
(data courtesy B. Murdock) 
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Research Questions 

• What prevents information stored in long-term 
memory to be efficiently retrieved? Answer: 
randomness of long-term memory      
representations  that results in repeated recall of 
same items. 

• Is there a parsimonious explanation for the 
power-law scaling of recall capacity? Answer: 
power-law scaling emerges from random 
distribution of transitions between different 
items.  



Free recall data set  
(Mike Kahana, Upenn) 

170 subjects 
 

112 trials/6 sessions per 
subject 
 

L=16 words per list 



‘Easy’ vs ‘difficult’ words 
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‘Easy’ vs ‘difficult’ words 

Katkov et al, 2014 

words of fixed size 



More subtle recall statistics 



More subtle recall statistics 

Katkov et al, 2014 



Model predictions 

• Easy vs difficult words 

• Nontrivial interactions between recall of easy 
vs difficult words (‘shielding’) 



Distribution of recall probabilities over a pool of  1638 
words (141 subjects, 112 trials/subject, L=16) 



Easy vs difficult words 



Recall statistics: data vs model 

Katkov et al, 2014 



Summary 

• Randomness of long-term memory      
representations  results in repeated recall of 
same items and hence limits the recall capacity. 

• Power-law scaling of retrieval capacity emerges 
from random distribution of transitions between 
different items. 

•  Recall capacity can be improved by applying 
recall strategies based on temporal presentation 
order.  

 

 

 

 


