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Principal Component Analysis 

1st Principal 
axis 

Approximation 
by straight lines: 
Subtract the 
projection 
and repeat 



Principal “Object” 
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Principal points (K-means) 

Centres y(i) 

Data points x(j) 

Approximation  
by  smaller finite sets: 
1. Select several centres; 
2. Attach datapoints to the 

closest centres by springs; 
3. Minimize energy; 
4. Repeat 2&3 until converges. 

Steinhaus, 1956; 
Lloyd, 1957;  
MacQueen, 1967 



Definition of elastic energy: 
we borrow this approach from splines 



Metaphor of elasticity: elastic net  

Data 
points 

Grid 
nodes 

U(Y) 

U(E) 
Positive 

springs 

Negative 

springs 

U(R) 



Definition of elastic energy 
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Assembling elastic nets 

y E (0) E (1) R (1) R (0) R (2) 



Various manifold topologies 

RN 

R2 



Colorings: visualize any  
multidimensional function 

Four dimensional space 
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F = F(x1,x2,x3,x4) 

F(x1,x2,x3,x4) = x1 F(x1,x2,x3,x4) = x2 

min 

max 

F(x1,x2,x3,x4) = x3 F(x1,x2,x3,x4) = x4 

F= x12+x22+x32+x42 F= -0.4x1+0.3x2-0.5x3-0.5x4 



Example of complex function:  
point density 



Visualization of uncertainty 
kNN methodology 

F(x1,x2,x3,x4) = x1 

F(x1,x2,x3,x4) = x2 

F(x1,x2,x3,x4) = x3 

F(x1,x2,x3,x4) = x4 
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Software 

http://bioinfo-out.curie.fr/projects/elmap/ 

C++ elmap package 

http://bioinfo-out.curie.fr/projects/vidaexpert 

VidaExpert end-user data visualization tool 

http://bioinfo-out.curie.fr/projects/vimida 

ViMiDa Java-applet 

+ Java implementation on demand 



Microarray datasets,  
 

 

 

 

One spot corresponds  

to a gene 

(mRNA concentration) 

DNA Gene B Gene A 

mRNA A mRNA B 

Protein B Protein A 

Table of numbers, characteristic size is 10000 genes x100 samples 

DNA CHIPS 



Large p (~10000), small n (~100) 
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p genes 

Rn 

Studying relations 

between genes, 

their functions, etc. 

Rp 

Classification problems, 

diagnosis, prognosis 

improvement 

Overfitting danger!  

Need for regularization! 



Are 2D non-linear projections  
better than 2D linear projections? 

Breast cancer 

Wang et al., 2005 

Bladder cancer 

Dyrskjot et al., 2003 

Human tissues, Shyamsundar et al., 2005 



Yes: better approximation,  
smaller MSE (as expected) 

(Gorban & Zinovyev, LNCSE, 2007)‏ 
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Yes: better representation of large distances 
(already less trivial) 

(Gorban & Zinovyev, IJNS, 2010)‏ 

Sheppad’s‏plot 

Initial distance 
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RN 

K points, 

K(K-1)/2 pairwise 

distances. 

 

Natural PCA: 

Select K most 

representative 

pairwise distances 

Quality of distance 

mapping (QDM) is a 

correlation coefficient 

between the pair-

wise distances before 

and after projection 

onto the manifold: 



Yes: better point entourage preservation 
(not necessarily expected) 

(Gorban & Zinovyev, IJNS, 2010)‏ 

RN 

RM<<N 



Quality of point neighborhood 
preservation(QNP). 

For every data point I we calculate the size of 

the intersection of the set of k neighbours 

calculated for embedding  in the multi-

dimensional space S(i; k) and in the low-

dimensional space Ṥ(i; k). 



Yes: better class  
compactness  
(not a trivial property) 

(Gorban & Zinovyev, IJNS, 2010)‏ 

 non-linear is worse –‏”-“

 non-linear is better –‏”+“

 non-linear is MUCH better –‏”+++“‏,”++“



Quality of group compactness 
(QGC) 

We assume that there is a label C(i) associated 

with every point i. N(B) is the number of points 

having the label B. For each label B, we  

calculate the average number of points with the 

same label in the k-neighborhood of the points 

before and after projection. Let us define c(i; k) 

as the number of points in the k-neighbourhood 

of the point i having the label C(i). For a label B, 
 



Principal graphs? 

(V) 
3-Star 2-Star 

RN 

RN 

? 



Generalization: what is principal graph? 
Ideal object: pluriharmonic graph embedment 
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Elastic k-star (k edges, k+1 nodes).  
The branching energy is 

Primitive elastic graph: all non-terminal nodes with 
k edges are elastic k-stars.  
The graph energy is 

2-stars (ribs) 

3-stars   
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edges stars

staredge
k k
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Pluriharmonic graph embedments generalize 
straight line, rectangular grid (with proper choice of k-stars), etc. 

S0 

Ideal position of S0 
(mean point of the star’s leaves) 

negative (repulsing) spring 



Pluriharmonic map 
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Definition. A map :V→ Rm defined on vertices of G is pluriharmonic iff for 
any k-star                      with the central vertex                 and the neighbouring 
vertices,                      i = 1...k, the equality holds:   

Suppose that for each k ≥ 2, a family Sk of k-stars in G has been selected. 
Then we define an elastic graph as a graph with selected families of k-stars 
Sk and for which for all E(i)  E and                             the corresponding 
elasticity moduli λi > 0 and μkj > 0 are defined. 
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Graph grammars 
the simplest one: add a node, bisect an edge 

Two operations: Operation 1) Add a node to a star Operation 2) Bisect an edge 



Principal harmonic dendrites (trees) 
approximating complex data structures 

Linear PCA 

Non-linear PCA 

Branching PCA 



Robustness and trimmed springs 

         r0   Radius of 

data-node interaction 
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Robust owners 
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Approximation  
by  smaller finite sets: 
1. Select several centres; 
2. Attach datapoints to their 

robust owners by springs; 
3. Minimize energy; 
4. Repeat 2&3 until converges. 



Three types of complexity 

The principal graphs can be called data approximators of controllable 
complexity. By complexity of the principal objects we mean the following 
three notions: 
•Geometric complexity: how far a principal object deviates from its ideal 
configuration; for the elastic principal graphs we explicitly measure 
deviation from the ‘ideal’ pluriharmonic graph by the elastic energy 
U(G) (3) (this complexity may be considered as a measure of non-
linearity);  
•Structural complexity : it is some non-decreasing function of the 
number of vertices, edges and k-stars of different orders 
SC(G)=SC(|V|,|E|,|S2|,…,|Sm|); this function penalises for number of 
structural elements; 
•Construction complexity is defined with respect to a graph grammar as 
a number of applications of elementary transformations necessary to 
construct given G from the simplest graph (one vertex, zero edges).  



HC vs Principal Trees 

“Genealogy tree” “Metro map” 

PCA, HC ordering 



Geometrization of the text:  
From DNA text to the space  

of frequency dictionaries 
Fragmentation of the DNA text 



Visualization of 7-cluster  
genome sequence structure 

Algorithm iterations      3D PCA plot                          Metro map 

Here clusters  
overlapping on 3D PCA 
plot are in fact well-separated 
and the principal tree reveals this 
fact 



Hierarchical clustering vs principal trees, or 

Genealogy tree vs Metro map 
(Gorban, Sumner & Zinovyev, LNCSE, 2007)‏ 

Microarray data from 
Shyamsundar et al. Genome Biology, 2005 

 
Gene expression in 103 normal human tissue 
samples 
 
10383-dimensional space, many missing values 
 
 
Similar tissues are closely clustered 
 
The tree allows to estimate ‘distance’ 
between human tissues 

Genealogy tree Metro map 



Conclusion 

• Method of elastic maps: Efficient method and 
interactive software for constructing low-
dimensional non-linear principal manifolds; 

• Principal manifold as a screen for visualizing 
multidimensional data and functions with their 
uncertainties; 

• Non-linear data visualization displays are 
systematically better than linear ones (four 
quality criteria: MSE, Distance mapping,  
Point entourage, Class compactness); 



• Pluriharmonic graph (with quadratic energy 
functionals for deviation from the ideal form) 
provide us with a rich set of approximants; 

• Topological grammars and E/M algorithms 
form an effective technology for datasets 
approximation; 

• Metro maps provide us with a nice robust 
visualisation tool; 

• It works. 
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20, No. 3 (2010) 219-232,  E-print: 
http://arxiv.org/abs/1001.1122 

• More: just go to arXiv and look for gorban 
 

http://arxiv.org/abs/0809.0490
http://arxiv.org/abs/0809.0490
http://arxiv.org/abs/0809.0490
http://arxiv.org/abs/1001.1122
http://arxiv.org/abs/1001.1122
http://arxiv.org/abs/1001.1122
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Change of era 

From Einstein’s “flight from 
miracle.”  

«… The development of this world of 
thought is in a certain sense  a 
continuous flight from “miracle”.» 

To struggle with complexity  

"I think the next century will be the century of complexity." 
   Stephen Hawking 
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Two main approaches in our  
struggle with complexity 

A‏“minimal”‏space‏

with this interesting 

content 

In high dimensionality many different 

things become similar, if we choose 

the proper point of view 

A large space  

with something 

interesting inside 
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Measure  
concentration effects 

Self-simplification in large dim 

Bn Sn 
Sn-1 

= = 

For large 

n 

Maxwell 

Gibbs 

Milman 

Talgrand 

Gromov 

……….. 

n/1
Projection 

Density of shadow  

Gaussian 

The Maxwell distribution 

Sn 
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A 3D representation  
of an 8D hypercube 

The body has the same 

radial distribution and the 

same number of vertices 

as the hypercube.  

 

A very small fraction of the 

mass lies near a vertex.  

 

Also, most of the interior is 

void.  
(Illustration by Hamprecht & Agrell, 

2002) 

Self-simplification in large dim 



Strange properties  
of high dimensional sets 

Observable diameter of the 

sphere Sn, n = 3, 10, 100, 

2500. 

 
Illustrations by V. Pestov, 2005 
 

Distribution of distances for 

pairs of points in the unit 

hypercube In, n = 3, 10, 100, 

1000. (For random samples of 

10,000 pairs.). 
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Three provinces of the 
Complexity Land  

Reducible models 

(Princ. Comp. …) 

Wild complexity ??? 

Self-
simplification 

(Stat. Phys. …) 


