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(II1. On Lines and Planesof Closest Fit to Systems of Points
in Space. By KaRL PrarsoN, FL.R.S., University College,
London *,

1) IN many physical, statistical, and biological investi-

) gations 1t is desirable to represent a system of

soints in plane, three, or higher dimensioned space by the

¢ best-fitting 7" straight line or plane.  Analytically this
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Principal “Object”




Principal points (K-means)

Data points xU)

Approximation
by smaller finite sets:

1.
2.

3.
4.

Select several centres;
Attach datapoints to the
closest centres by springs;
Minimize energy;

Repeat 2&3 until converges.

Steinhaus, 1956;
Lloyd, 1957;
MacQueen, 1967




@ Definition of elastic energy:
we borrow this approach from splines




Metaphor of elasticity: elastic net

Positive
springs
Negative
springs
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Assembling elastic nets
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Various manifold topologies
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Colorings: visualize any
multidimensional function
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| I:.(X:I--,X-Z,X?),X4) =x1 F(Xl,XZ,XB,X4D) = x2

F(xi,x2,x3,x4) =x3 F(x1,x2,x3,x4) = x4

e
uf R

F = F(x1,x2,x3,x4)

F= -0.4x1+0.3x2-0.5x3-0.5x4 F= x12+x22+x32+x42



Example of complex function:

point density




Visualization of uncertainty

kNN methodology

high
F(x1,x2,x3,x4) = x1

function value

low F(x1,x2,x3,x4) = x2

® F(x1,x2,x3,x4) = x3

high
uncertainty

ighe low
e@/ncertainty uncertainty
© F(x1,x2,x3,x4) = x4

uncertainty
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Software
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elmap - is & tool for fast constructing non-linear principal surfaces with different topologies in aswell asin | spaves, for discrete sets
C++ elmap package

keywaris: principal curve, principal sucface, probabilstic, dimensionality reduction, nonlinear manifold, generative topographic mapping =

Description

. . . .
] - Principal curves and surfaces are nolinear generalizations of principal coraponents and subspaces, respectively. They can provide insightfil suramary of
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Microarray datasets,

One spot corresponds
to a gene

. DNACHIBS L5 L
e B (mRNA concentration)

Table of numbers, characteristic size is 10000 genes x100 samples



p genes

Large p (~¥10000), small n (~100)

n samples

? -

Studying relations
between genes,

their functions, etc.

p genes

n samples

\

RpP

Classification problems,
diagnosis, prognosis
improvement

Overfitting danger!
Need for regularization!



Are 2D non-linear projections
better than 2D linear projections?
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Bladder cancer

Breast cancer Dyrskjot et al., 2003

Wang et al., 2005
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Yes: better approximation,
smaller MSE (as expected)

e x,. y °
e X

‘.\'.\ o : A

e o

e e
Dataset ELMAP2D| PC1 | PC2 | PC3 | PC4 | PC5 |PC10
Breast cancer MSE 48.1 52.6 | 50.7 | 49.3 | 48.4 | 47.6 | 45.3
Variation explained - 7.9% 114.3%(19.0% (22.0% |24.6%|31.5%
Bladder cancer MSE 40.6 A48.7 | 45.4 | 42.8 | 40.7 | 39.2 | 33.0
Variation explained - 21.0%31.4%|38.9%44.8% |48.8% 63.8%
Normal tissues MSE 36.9 48.8 | 45.5 | 42.3 | 40.1 | 38,5 | 324
Variation explained - 10.7%19.1%126.0%|30.3%(32.2% [40.7%

)



Yes: better representation of large distances

(already less trivial)
Sheppad’s plot
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Distance after projection

o
1

Initial distance

K points,
K(K-1)/2 pairwise
distances.

Natural PCA:
Select K most
representative
pairwise distances

pci1o Quality of distance

Dataset /method ELMAP2D |PCL|PC2|PC3|PC4|PC5

Breast cancer/Pearson 0.60 0.40(0.52]0.61]0.65 |0.69 | 0.75
Breast cancer/Spearman 0.40 0.19]0.3210.36|0.4210.49| 0.56
Bladder cancer/Pearson 0.87 0.8210.84]0.88]0.89 [0.91 0.96
Bladder cancer/Spearman 0.68 0.5710.60]0.70]0.70 |0.75 | 0.90
Normal tissues/Pearson 0.80 0.68]0.780.82]0.86 [0.87| 0.95
Normal tissues/Spearman 0.68 0.56(0.69]0.79]0.840.86 | 0.94

mapping (QDM) is a
correlation coefficient
between the pair-
wise distances before
and after projection
onto the manifold:

(Gorban & Zinovyev, IINS, 2010)



Yes: better point entourage preservation
(not necessarily expected)

Dataset ELMAP2D |PCL|PC2|PC3|PC4|PC5|PC10 RANDOM

Breast cancer (k=10) 0.26 0.1310.2010.280.31(0.38] 0.47 [0.04 £ 0.06

Bladder cancer (k=5) 0.53 0.34 10.530.61]0.64|0.70| 0.80 [0.12 £ 0.14

Normal tissues (k=5) 0.49 0.2310.33]0.43]0.50 [0.54| 0.69 [0.05 + 0.09

(Gorban & Zinovyev, IIJNS, 2010)



Quality of point neighborhood
preservation(QNP).

For every data point | we calculate the size of
the intersection of the set of k neighbours
calculated for embedding in the multi-
dimensional space S(i; k) and in the low-
dimensional space S(i; k).

QNP =1/k Y  |S(i:k) N S(i: k)| /N.
i=1...N



Class |1\ZD |EL1\ I,L\P2D|F’(" 1 |P(‘2 |T’(".‘i|]"("-4

Yes: bette r CIaSS Breast cancer (GROUP), k=5

P(“5|P("1u|n ANDOM

A (193 samples) 0.73 0.67 0.71|0.67]0.68[0.69|0.70| 0.70 | 0.67+0.27
B (93 samples) 0.31 0.30 0.33(0.29|0.35[0.37]0.38| 0.31 | 0.33+0.21
CO m pa Ct n eSS Breast cancer (TYPE), k=3
= lumA (95 samples) 0.61 0.60 0.64]0.65|0.67]0.72|10.71| 0.74 | 0.33£0.27
. v =+ 4+ basal (55 samples) 0.88 0.93 0.83(0.8610.88(0.90/0.88( 0.89 |0.194+0.17
(not a U'IVIG/ I’O ert = unclas. (42 samples) [0.28 0.20 0.27(0.25(0.27]0.27]0.30| 0.29 [0.1540.16
p p y 4+ unormal (35 samples) [0.68 0.28 0.14(0.19]0.31 [0.41 [0.41 | 055 [0.12=40.19
+ 4 crrb2 (34 samples)  [0.62 0.36 0.24(0.34]0.32[0.32(0.43 | 0.59 [0.12=0.19
= lumB (25 samples) |0.21 0.08 0.20(0.20|0.21)0.25]0.23 | 0.36 | 0.09+0.17
| [ mes‘ [ | | Bladder cancer (TYPE), k=3
_‘%‘_l L | PR L | Ta (20 samples) 0.85 0.83 0.80(0.85]0.85[0.85]0.85| 0.85 | 0.50£0.29
i e, o _ T1 (11 samples) 0.58 0.67 0.45(0.69(0.67]0.70|0.67 | 0.63 | 0.2740.26
T e | -+ T2+ (9 samples) 0.85 0.89 0.11[0.85]0.81 [0.89|0.78| 0.81 | 0.22:£0.24
)| Bladder cancer (GRADE), k=3
L o & 4 Grade 3 (32 samples)|0.94 0.92 0.86[0.83]0.90]0.95]0.94] 0.94 | 0.840.23
e 4+ CGrade 2 (6 samples) [0.5 0.61 0.220.20[0.67[0.67|0.67| 0.61 |0.1540.23
TR vy e EARIE izl Normal tissues (TISSUE), k=2
iy BRAIN (8) 1.0 1.0 1.0 {0.94] 1.0 [ 1.0 | 1.0 | 1.0 |0.084+0.19
e +++ HEART (6) 0.92 0.50 0.17|0.25[0.25[0.25]|0.33| 0.58 | 0.060.16
G | | ++4++ THYROID (6) 0.92 0.67 0.17|0.17[0.25[0.17]0.67| 0.75 | 0.0620.17
B e = =P +++ PROSTATE (5) 1.0 0.8 00|00]01]04]05] 1.0 |0.05+0.16
E7 Lpmearmen] | [ ROD T O BT ERLEER B )
Sl o | | a0 OVARY (5) 0.7 0.6 02)01]03]04|05] 07 [0.054+0.15
. T - LUNG (4) 0.8% 0.40 0.5 [0.630.75]0.63|0.63| 0.75 | 0.04£0.13
e ADRENAL (4) 0.625 0.0 0.0 [0.0]|0.0 (02505 |0.625|0.04+0.14
b +4+ LIVER (4) 0.88 0.88 0.13/0.75[0.75 [0.88 |0.88 | 0.88 | 0.044-0.14
| +++ SALIVARY (4) 1.0 1.0 0.25(0.25(0.50/0.88| 1.0 | 1.0 |0.0440.14
e e ++ TONSIL (4) 0.88 0.63 0.0 {0.13/0.34{0.75/0.75| 0.88 | 0.04+0.14
fron | = ] LYMPHNODE (4) 0.75 0.25 0.25(0.25] 0.0 {0.25]0.25] 0.25 [ 0.0430.14
' +4++ FALLOPIAN (4) 0.88 0.50 0.0 [0.13]0.25(0.25 [0.25| 0.75 | 0.04=0.14
+  SPLEEN (3) 0.67 0.50 0.50[0.33[0.33(0.80(0.67| 0.83 | 0.0340.12
| B + KIDNEY (3) 1.0 0.33 0.0 | 0.0 |0.33]0.33]0.33| 0.67 | 0.0340.12
= UTERUS (3) 0.83 0.33 0.0 [0.330.33]0.33|0.33| 0.83 | 0.03£0.12
a) ELMAP2D BOWEL (3) 0.17 0.0 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 [0.034+0.12
ESOPHAGUS (3)  |0.67 0.0 0.0]0.0|00]|0.0|00]|067|0.03+0.12
COLON (3) 0.33 0.0 0.17| 0.0 | 0.0 [0.17]0.17| 0.17 | 0.03£0.12
3 STOCMACH (3) 0.5 0.0 0.0]0.0|00]0.0|00]| 00 [0.03£0.12
3 3 RN RM<<N
3 3
3 2
({3 . .
9 2 1 ?|1 ) 33 1 ) -” — non-linear is worse
11 ” . .
22 4 4 2 ] +” — non-linear is better
11 ” 13 ” . .
2 1 4 1 A 1 ++” “+++” — non-linear is MUCH better
4 2 4 4
1
1 1 4 4
4

4 (Gorban & Zinovyev, IINS, 2010)
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Quality of group compactness
(QGC)

We assume that there Is a label C(i) associated
with every point I. N(B) Is the number of points
having the label B. For each label B, we
calculate the average number of points with the
same label in the k-neighborhood of the points
before and after projection. Let us define c(i; k)
as the number of points in the k-neighbourhood
of the point I having the label C(i). For a label B,

QGCy(B)=1/k »  «c(i:k)/N(B)
C(i)=B



(V)



Generalization: what is principal graph?
Ideal object: pluriharmonic graph embedment

negative (repulsing) spring

Elastic k-star (k edges, k+1 nodes).
The branchin energy |s

Uy star :uk L
i=1 Ideal position of SO

(mean point of the star’s leaves)

Primitive elastic graph: all non-terminal nodes with
k edges are elastic k-stars.

PR-stars (ribs) |

- / The graph energy is
__ r — _
o UG - Z uedge"'z Zustar
edges k k—stars

Pluriharmonic graph embedments generalize
straight line, rectangular grid (with proper choice of k-stars), etc.




Pluriharmonic map

Suppose that for each k > 2, a family S, of k-stars in G has been selected.
Then we define an elastic graph as a graph with selected families of k-stars
S, and for which for all E/) € E and Séj) € Sy the corresponding
elasticity moduliA, >0 and K> 0are defined.

Definition. A map ¢:V-> R™ defined on vertices of G is pluriharmonic iff for
any k-star Skj) € Sy with the central vertex Séj) (0) and the neighbouring
vertices, Séj) (i) i = 1...k, the equality holds:

H(S(0)) = %Zﬂsé” (i)



Graph grammars
the simplest one: add a node, bisect an edge

Two operations: Operation 1) Add a node to a star  Operation 2) Bisect an edge
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Principal harmonic dendrites (trees)
approximating complex data structures

(0]
® Branching PCA
(0]




Robustness and trimmed springs

Pr,

I'o Radius of
data-node interaction
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Robust owners

$ N - i
N Approximation
N,
SO 0 by smaller finite sets:
<1y % Iy 1. Select several centres;
@ B 2. Attach datapoints to their
érO robust owners by springs;
% 3. Minimize energy;
§ \/W&@\ / 4. Repeat 2&3 until converges.
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Three types of complexity

The principal graphs can be called data approximators of controllable
complexity. By complexity of the principal objects we mean the following
three notions:

eGeometric complexity: how far a principal object deviates from its ideal
configuration; for the elastic principal graphs we explicitly measure
deviation from the ‘ideal’ pluriharmonic graph by the elastic energy
U(I)(G) (3) (this complexity may be considered as a measure of non-
linearity);

eStructural complexity : it is some non-decreasing function of the
number of vertices, edges and k-stars of different orders

SC(G)=SC(| VI, |El,|S,I,...,|S,,]); this function penalises for number of
structural elements;

eConstruction complexity is defined with respect to a graph grammar as
a number of applications of elementary transformations necessary to
construct given G from the simplest graph (one vertex, zero edges).



HC vs Principal Trees

“Genealogy tree” “Metro map”

H . Iris-virginica
O Iris-versicolor
O Tris-setosa ¢
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Geometrization of the text:

From DNA text to the space
of frequency dictionaries

Fragmentation of the DNA text

”cg;ggtgagctga ctagggacgcacgtggtgagctgatgc%ggggacgacg gtgagctgatgctagggacgc...
— & —l
%b
Gr, '

tagggacgcacgtggtgagctgatgctaggg
frequency dictionaries:

jggacgcacgtggtgagctgatgctaggg N = 4=41
)Jg ga cg ca cg tg gt ga gc tg at gc tagg N = 16=42
gga cgc acg tgg tga gct gat gct agg N = 64=43

J gacg cacg tggt gagc tgat gcta ggar N=256=44

cgtggtgagctgatgctagggacgcacgtggtgagcetgatgctagggacgacgtggtgagcete

rx:]_()8
cgtggtgagctgatgctagggacgcac
ggtgagctgatgctagggacgcacact\\\
tgagetgatgctagggacgcacaatto,
Jgtgagctgatgctagggacgcacy

gagctgatgoctagggacgcagaac

~10° fragment




Visualization of 7-cluster

genome sequence structure
Algorithm iterations 3D PCA plot Metro map

Here clusters
overlapping on 3D PCA

plot are in fact well-separated
and the principal tree reveals this
fact



Hierarchical clustering vs principal trees, or

Genealogy tree vs Metro map
(Gorban, Sumner & Zinovyev, LNCSE, 2007)

Microarray data from

,Genealogy tree Metro map Shyamsundar et al. Genome Biology, 2005
Gene expression in 103 normal human tissue
samples

DIAPHRAGM. .\ or
MUSCLE, _BRAIN 10383-dimensional space, many missing values
LHADRENAL HEART  gran e |
VER ADRENAL 7
=1 Similar tissues are closely clustered
LIVER
9 The tree allows to estimate ‘distance’
THYROID K'D~ between human tissues
PARATHYROID
THYROID
ADRENAL A i;ILEDiN BUFFYCOAT
LIVER 9,V TONSIL __,4LYMPHNODE
STOMACH Irtrone! >
PANCREAS UTERNE=, TT%EdthnlljS
o 0 me' UTERUS
GALLELADDER X AFa e N e TR
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Conclusion

 Method of elastic maps: Efficient method and
interactive software for constructing low-
dimensional non-linear principal manifolds;

* Principal manifold as a screen for visualizing
multidimensional data and functions with their
uncertainties;

* Non-linear data visualization displays are
systematically better than linear ones (four
quality criteria: MSE, Distance mapping,
Point entourage, Class compactness);



Pluriharmonic graph (with quadratic energy
functionals for deviation from the ideal form)
provide us with a rich set of approximants;

Topological grammars and E/M algorithms
form an effective technology for datasets
approximation;

Metro maps provide us with a nice robust
visualisation tool;

It works.



* [1] A. N. Gorban, A.Y. Zinovyey, Principal
Graphs and Manifolds. In: Handbook of
Research on Machine Learning, 1GI Global,

2009. 28-59.

E-print: http://arxiv.org/abs/0809.0490

* [2] A. N. Gorban, A. Zinovyeyv, Principal
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International .

graphs in practice: from
ogy to dynamical systems,
ournal of Neural Systems, Vol.

20, No. 3 (2010) 219-232, E-print:
http://arxiv.org/abs/1001.1122

* More: just go to arXiv and look for gorban
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Change of era

From Einstein’s “flight from
miracle.”

«... The development of this world of
thought is in a certain sense a
continuous flight from “miracle”.»

To struggle with complexity

"I think the next century will be the century of complexity."
Stephen Hawking



Two main approaches in our
struggle with complexity

A large space
with something
Interesting inside

A “minimal” space
with this interesting
content

In high dimensionality many different
things become similar, if we choose
the proper point of view

41



Measure
concentration effects

For large
N @ The Maxwell distribution
= == C
Maxwell 1/ \/7 /ﬁ\ Projection
Gibbs n L
Mllman Gaussian ;a" \L\
Talgrand \

Gromov Density of shadow

Self-simplification in large dim



A 3D representation

of an 8D hypercube

Self-simplification in large dim

The body has the same
radial distribution and the
same number of vertices
as the hypercube.

A very small fraction of the

- mass lies near a vertex.

Also, most of the Interior Is

void.
(Hllustration by Hamprecht & Agrell,

2002)
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Strange properties
of high dimensional sets

®
Observable diameter of the Distribution of distances for
sphere S", n = 3, 10, 100, pairs of points in the unit
2500. hypercube I", n = 3, 10, 100,

1000. (For random samples of



Three provinces of the
Complexity Land

45



