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Abstract. Dynamic model of a recurrent neuron with a sigmoidal ac-
tivation function is considered. It is shown that with the presence of a
modulation parameter its activation characteristic (dependence between
input pattern and output signal) varies from a smooth sigmoid-like func-
tion to the form of a quasi-rectangular hysteresis loop. We demonstrate
how a gateway element can be build using a structure with two rec-
ognizing neurons and one output neuron. It is shown how its functional
properties change due to changes in the value of the modulation parame-
ter. Such gateway element can take the output value based on a weighted
sum of signals from the recognizing neurons. On the other hand it can
perform a complex binary-like calculation with the input patterns. We
demonstrate that in this case it can be used as a coincidence detector
even for disjoint-in-time patterns. Futhermore, under certain extreme
conditions it can be triggered even if only the one input pattern was rec-
ognized. Also the results of numerical simulations presented and some
directions for futher development suggested.

Keywords: neurodynamic model, hystersis, adaptiveness

1 Introduction

There are a number of challenges in the field of development of an intelligent
control systems for highly autonomous robotic systems such as unmanned aerial
vehicles. One of these challenges is related to a mechanism that provides the
control system with the ability to accumulate the experience from processed
data and apply it in further. In other words, it is the task of developing a model
with unsupervised or semi-supervised online learning algorithm which can work
effectively in a dynamic and uncertain environment under a condition of limited
computing resources.

Related and similar tasks are already successfully solved by methods from
the field of machine learning such as incremental learning models [1, 2]. They can
be applied to an environment in which there are some types of uncertainty and
noise or other difficulties. Almost all of them are based on feedforward and simple
recurrent architectures which means that they can not reliably maintain activity
of neurons without an external signal. But from our point of view this is necessary
for context dependent recognition and learning [3]. The LSTM model [4] is the
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most suitable in this case because it has a special context cell to maintain internal
neural network activity. But learning algorithms of this model are based on
supervised techniques which is unacceptable in our problem.

We previously proposed the concept of a neural network model [3] as one
of the possible approaches to solving the problem outlined above. Our model
divided into two parts: working network that performes pattern recognition and
learning as well as auxiliary network that evaluates the first one and produces the
value of the modulation parameter. An important feature of neuron model used
in a working network is that its activation characteristic (i.e. the dependence
between an input pattern and an output value) can contain a hysteresis loop [5]
under certain values of the modulation parameter as described in [6,7]. And
as shown in [8, 9] the presence of a hysteresis loop in an activation function is
related to robust implementations of some working memory models. But at the
same time activation characteristic will have the form of a smooth curve under
other values of the modulation parameter. Thus, we can change the behaviour
of neurons from gradual to trigger mode and can use this property to implement
a gateway element with some interesting features.

2 Neuron model

A neuron model used in this paper differs in some details from the one which
was described in the related article [7]. Namely, in this article the activation
function was replaced by a sigmoidal function and the threshold parameter was
moved into a weights vector as one of the coefficients. As a result, model became
as follows:

du/dt = ay+i(w,x)— pu, (1)

where u € R is a potential variable, y € [0;1] is an output variable, w € RM
is a weights vector, x € [0; 1]N is an input vector, a € [0;+00) is a recurrent
connection weight, u € (0;1) is a potential dissipation parameter, 6 € (0;+00]
is a modulation parameter, i(w,x) is an external excitation function (in the
following we will omit the arguments for brevity) which can be specified as a
scalar product or as a Gaussian radial basis function or as any other distance
measure function, h(u,0) = wu/0 is a potential modulation function, f(z) =
o(z — A) is a sigmoidal activation function with A = 3.0. Also we assume that
the values of parameters o and p are fixed and selected in advance while the
value of a modulation parameter € is changeable during model operating.

It can be shown that the value of variable y will converge exponentially to
some stable equilibrium point y* of the dynamic system (1). To find these points
we need to rewrite equations (1) as follows:

F(y) = du/dt = oy + i — pfg(y) (2)

where g(y) = A+ log(y/(y)) is the function inverse to the function f. In this
case the equilibrium points can be determined from the condition F(y*) = 0.



Adaptive Gateway Element Based on a Recurrent Neurodynamical Model 3

Moreover, equilibrium point y* will be stable if F’(y;) < 0 and unstable if
F'(yr) > 0, otherwise, additional analysis will be required. It should be noted
that there is no analytical solution and therefore this equation must be solved
either graphically as shown on Fig. 1 or using numerical methods.
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Fig. 1. Graphical solutions of a model (1): (a) the stable point y* in the case of monos-
tability; (b) the stable points y; 3 and the unstable point 5 in the case of bistability

At the same time bifurcation analysis can be performed analytically based
on the Eq. (2). It can be shown that a model (1) has cusp catastrophe [10] by
parameters 6 and i. Corresponding pitchfork bifurcation at the point 8 = a/4u
shown in Fig. 2a where the values of parameter ¢ at each point was choosen to
get a symmetrical curve. In the case of § > «/4p there exist only one stable
equilibrium point and activation characteristic function has the form of a sig-
moidal curve as shown in Fig. 1a. Moreover, the slope of this curve decreases as
the value of the parameter 6 increases.

In the case of § < «/4u a bistability region arises and it corresponds to
the range i € (i7;i") as shown in Fig. 1b. As we can see increasing of the
parameter 7 value leads to abrupt change of the output value y at the point
iT and a similar abrupt change occurs at the point ¢~ during its decreasing. It
can be shown that these threshold values i* are determined by the extremes
of the equation (2) and can be evaluated as follows: i* = —ay™* + ufg(y™)
where y* = 0.5 F \/0.25 — uf/a. Fig. 2b shows the dependence between these
thresholds and modulation parameter 6. As shown in Fig. 2c the values y*
themselves determine the region (y~;y™) where the stable equilibrium points
y* can not exist. As a result, activation characteristic function takes the form of
a hysteresis curve with a loop which becomes closer and closer to a rectangular
shape with decreasing value of the modulation parameter 6.
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Fig. 2. The properties of the dynamic system (1): (a) a pitchfork bifurcation at the
point 6 = «/4u; (b) the dependence of the thresholds i* on the modulation parameter
0 (shaded region corresponds to a bistability area); (c) the boundary between areas of
a stable (not shaded region) and unstable (shaded ragion) points

3 Gateway model

Let us consider now a gateway model formed by connecting the neurons as shown
in Fig. 3a. As a result, overall gateway state will be described as follows:

{duk/dt = ayp + i — pug, 3)

Yk = f(h(u’we))’
where the first and second (k = 1,2) neurons process input patterns from two
different data channels with appropriate external excitation values 7; 5 and the

third one (k = 3) generates the gateway output signal o = y3 using excitation
value i3 = By1 + Bya.
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Fig. 3. Architecture: (a) gateway element; (b) computational element for future re-
search based on the model of gateway element

Consider the case when the value of parameter 6 corresponds to the region
of monostability. As we noted early, in this case activation characteristic of a
neuron has the form of a sigmoidal curve. Denote it as a function ¢g(i) where
the subscript emphasizes the dependence between the slope of this curve and
the value of modulation parameter 6. Then the value of gateway output signal
can be represented as o = ¢p(i3) where iz = 8- (dg(i1) + ¢pg(42)). Thus, the
external signals 77 and iy will be transfered by the gateway element in the form
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of nonlinear weighted sum and the amplitudes of these nonlinear transformations
are controlled by the value of modulation parameter 6.

In the case of bistability the value of neuron output variable y takes values
from the neighborhoods of points 0 (inactive state) and 1 (active state) as shown
in Fig. 2c, i.e. y € OF (0) and y € O, (1) where the subscript emphasizes the
dependence between the width of neighborhoods and the value of modulation
parameter ¢. In this case we can conclude that the value of i3 € O, (23) if both
of values 71 and i overcome the threshold value ™ and i3 € Og(3) if only the
one of them overcome the threshold value and otherwise i3 € O, (0). But the
gateway output o can be in active state only when the value of i3 overcome the
threshold ™. So, for a some fixed range of modulation parameter § values we
can choose the value of parameter 3 that satisfy to inequality z1 < iT < 2
for Vz; € Oy() and Vzu € Oy(28). In this case the gateway output o will be
active only when both input patterns from data channels are recognized. In
other words, the gateway element will become a coincidence detector. But on
the other side, we also can choose the value of parameter 8 which will admit
an activation of the gateway element even if input pattern from only the one
channel recognized.

Also note the extreme condition when the value of threshold parameter i~
falls below zero as shown in Fig. 2b. In this case the neurons that had previously
passed into the active state can remain active even if there is no input signal.
As a result, the gateway element can determine a coincidence by disjoint-in-time
patterns due to self-sustained activity of recognizing neurons.

We performed numerical simulation to confirm the results obtained above
with the following parameters: y = 0.75, « = 3.0 and § = 0.5. During the
simulation we explicitly changed the values of external excitation signals 4 » as
well as the value of modulation parameter . As shown in Fig. 4 the results
of simulation meet with our expectations. The case of performing a nonlinear
weighted summation corresponds to the time interval [t1;t2]. The case of input
patterns coincidence detection corresponds to the time interval [t3;t4] and the
special case of coincidence detection for disjoint-in-time patterns corresponds to
the time interval [ts5; tg].

4 Conclusions

We demonstrated that activation characteristic of the described neurodynamical
model of neuron can vary from a smooth sigmoid-like function to the form of a
quasi-rectangular hysteresis loop. It was shown how these changes are controlled
by the value of modulation parameter # and how this parameter is related with
other parameters of the model.

Also we demonstrated how a gateway element can be build using the de-
scribed neuron model. It was shown that for the certain range of modulation
parameter values the gateway element transfers the input signals as a nonlinear
weighted sum but for the other range of modulation parameter values it be-
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Fig. 4. Results of performed numerical simulation with different values of the external
excitation signals io and different values of the modulation parameter

gins to perform a binary-like calculation as a complex coincidence detector with
additional functional features.

As shown in Fig. 3b futher research is related to the development of a com-
putational element that would learn to associate the ascending and descending
data streams in neural network based on the results obtained here for the model
of gateway element.
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